AD-A055 652

BROWN UNIV PROVIDENCE R I LEFSCHETZ CENTER FOR DYNAM--ETC F/G 12/1
LARGE DEVIATIONS FOR DIFFUSIONS DEPENDING ON SMALL PARAMETERS: --ETC(U)
1978 W H FLEMING AFOSR-76-3063 AFOSR-76-3063 AFOSR-TR-78-1022

UNCLASSIFIED

NL

O55652

END DATE FILMED 8 -78

FOR FURTHER TRAN 14

	1		1
-		7	
/		Z	/
	0	_	

NO. --

	19 REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM	
1	AFOSR TR- 78-1022	3. RECIPIENT'S CATALOG NUMBER	
-	LARGE DEVIATIONS FOR DIFFUSIONS DEPENDING	5. TYPE OF REPORT & PERIOD COVERED	
	ON SMALL PARAMETERS: A STOCHASTIC CONTROL METHOD	8. CONTRACT OF GRANT NUMBER(s)	
-	10/Wendell H./Fleming	MAFOSR-76-3063 VNSF-MC\$765	77247
	Performing organization name and address Lefschetz Center for Dynamical Systems Division of Applied Mathematics Brown University, Providence, R.I. 02912	10. PROGRAM ELEMENT, PROJECT TASK AREA & WORK UNIT NUMBERS 11. 17. A 1 61102F 2304/A1	
	Air Force Office of Scientific Research/NM Bolling AFB, Washington, DC 20332	1) 978 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
	14 MONITORING AGENCY NAME & ADDRESS/If different from Controlling Office)	UNCLASSIFIED	
-	16. DISTRIBUTION STATEMENT (of this Report)	15a. DECLASSIFICATION DOWNGRADING SCHEDULE	
-			
	17 DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from	m Report)	
	Approved for public release; distribution unli	mited. DDC	
	18. SUPPLEMENTARY NOTES	JUN 21 1978	
	19. KEY WORDS (Continue on reverse side if necessary and identify by block number)	E E	
	epsilon	approaches	
	This paper considers stochastic differential depending on a small parameter E, which the noise term of the equation. The Vent give an asymptotic formula as 6 0 for solution trajectory hits a given compact time interval. A stochastic control methers is outlined. Detailed proofs as	enters as a coefficient in cel-Freidlin estimates the probability that a set B during a given od to obtain such	
-	D 1 AA 73 1473 EDITION OF ! NOV 65 IS OBSOLETE UNCLAS	SIFIED TOB	

HOT 834 SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

ACCOMPANYING STATEMENT

LARGE DEVIATIONS FOR DIFFUSIONS DEPENDING
ON SMALL PARAMETERS: A STOCHASTIC CONTROL METHOD

by

Wendell H. Fleming

This paper summarizes a stochastic control method to derive estimates of Ventcel-Freidlin type that a solution trajectory of a stochastic differential equation hits a given set B during a given time interval. A more detailed treatment of the method is given in the author's paper, "Exit probabilities and optimal stochastic control" to appear in Applied Mathematics and Optimization.

ACCESSION	
HTIS	White Section
DOC	Buff Section
WANNOUNG	ED [
JUSTIFICAT	10N
M	TION /AWAII ARILITY CODES
	TION/AVAILABILITY CODES
DISTRIBUT	FION/AVAILABILITY CODES AVAIL and/or SPECIAL

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC) This technical report has been reviewed and is approved for publ o release IAW AFR 190-12 (76) 28 06 19 024

AFOSRTR 78-1022

NOTICE OF TRANSMITTAL TO DDC Distribution is unlimited. A. D. BLOSE Technical Information Officer

LARGE DEVIATIONS FOR DIFFUSIONS DEPENDING ON SMALL PARAMETERS: A STOCHASTIC CONTROL METHOD

Wendell H. Fleming

ABSTRACT

This paper considers stochastic differential equations depending on a small parameter ε , which enters as a coefficient in the noise term of the equation. The Ventcel-Freidlin estimates give an asymptotic formula as $\varepsilon \to 0$ for the probability that a solution trajectory hits a given compact set B during a given time interval. A stochastic control method to obtain such estimates is outlined. Detailed proofs are given elsewhere.

l. The problem. Consider a Markov diffusion process ξ^{ε} on n-dimensional R^n which obeys the stochastic differential equations

(1.1)
$$d\xi^{\varepsilon} = b[t, \xi^{\varepsilon}(t)]dt + \sqrt{\varepsilon} \sigma[t, \xi^{\varepsilon}(t)]dw, \quad s < t,$$

with initial data $\xi^{\varepsilon}(s) = x$. Here w is an n-dimensional brownian motion and ε a positive parameter. Let B be a compact set, $B \subset \mathbb{R}^n$, and let τ_B^{ε} denote the first time t such that $\xi^{\varepsilon}(t) \in B$. If $\xi^{\varepsilon}(t) \in \mathbb{R}^n$ - B for all $t \geq s$ we set $\tau_B^{\varepsilon} = +\infty$. Given T > s, let

$$q_{B}^{\varepsilon} = P(\tau_{B}^{\varepsilon} \leq T).$$

Address: Brown University, Providence, Rhode Island 02912, U.S.A. This Research was partially supported by the Air Force Office of Scientific Research under AF-AFOSR 76-3063 and in part by the National Science Foundation under NSF-MCS 76-07247.

Let us also consider the unperturbed system

(1.3)
$$d\xi^{0} = b[t, \xi^{0}(t)]dt, \quad s \leq t,$$

with the same initial data $\xi^0(s) = x$. If $\tau_B^0 > T$, then $q_B^\varepsilon \to 0$ as $\varepsilon \to 0$. The Ventcel-Freidlin estimates [3], [5] give a more precise statement about the rate of convergence to 0 of q_B^ε , under certain assumptions about the coefficients b, σ in (1.1) and the set B. A different method, based on stochastic control ideas, was used in [1], [2] to obtain estimates of Ventcel-Freidlin type. In this note we outline this stochastic control method, as it applies to the problem of estimating q_B^ε .

2. Upper and lower estimates. Let us assume that b is Lipschitz on R^{n+1} , and that σ together with its inverse σ^{-1} are bounded and Lipschitz. Some results in which σ degenerates in a particular way appear in [4]. Let a = $\sigma\sigma'$, and consider the variational integrand

(2.1)
$$L(t,\phi,\dot{\phi}) = \frac{1}{2} (b(t,\phi) - \dot{\phi})'a^{-1}(t,\phi)(b(t,\phi) - \dot{\phi}).$$

Let

$$\Gamma_{B} = \{ \phi \in C([s,T]; \mathbb{R}^{n}) : \phi(s) = x, \exists \theta \in [s,T] \ni \phi(\theta) \in B \},$$

$$(2.2) \qquad \qquad I_{B} = \min_{\Gamma_{B}} \int_{s}^{T} L[t,\phi(t),\dot{\phi}(t)] dt.$$

(The integral on the right side is defined to be $+\infty$ if ϕ is not absolutely continuous.) Let

(2.3)
$$I_{B}^{\varepsilon} = -\varepsilon \log q_{B}^{\varepsilon}.$$

Theorem 1.
$$I_B \leq \lim_{\varepsilon \to 0} \inf I_B^{\varepsilon}$$
.

This theorem gives an upper estimate for q_B^{ϵ} . We shall outline a stochastic control proof in §3, and refer to [2] for details.

In order to state a lower estimate, we make the following additional assumption: There exists a relatively open set $\Gamma_B^0 \subset \Gamma_B$ such that

(2.4)
$$\inf_{\Gamma_{B}^{0}} \int_{s}^{T} L[t,\phi(t),\dot{\phi}(t)]dt = I_{B}.$$

By relatively open we mean that given $\phi \in \Gamma_B^0$ there exists $\delta > 0$ such that $\psi \in C([s,T];R^n)$, $\psi(s) = x$ and $||\psi-\phi|| < \delta$ imply $\psi \in \Gamma_B^0$.

Theorem 2. If (2.4) holds, then
$$I_B \ge \lim_{\varepsilon \to 0} \sup_{B} I_B^{\varepsilon}$$
.

Theorem 2 is an immediate consequence of the first Ventcel-Freidlin estimate [3, p. 332]. That estimate is rather easily obtained from the Girsanov formula. On the other hand, the usual proof of Theorem 1 is based on a somewhat more technically complicated second Ventcel-Freidlin estimate [3, p. 334]. Our method furnishes an alternative proof, as well as a different intuition for arriving at such results.

From Theorems 1 and 2 one has $I_B^{\varepsilon} + I_B$ as $\varepsilon + 0$, which is the desired result about the probability of large deviations.

3. Stochastic control method. Let us fix T > 0 and consider 0 < s < T. Let Q = $(0,T) \times (R^n-B)$, and write $q_B^{\varepsilon} = q_B^{\varepsilon}(s,x)$. Then $q_B^{\varepsilon} \in c^{1,2}(Q)$ and satisfies in Q the backward partial differential equation

(3.1)
$$\frac{\partial q_B^{\varepsilon}}{\partial s} + \frac{\varepsilon}{2} \sum_{i,j=1}^{n} a_{ij}(s,x) \frac{\partial^2 q_B^{\varepsilon}}{\partial x_i \partial x_j} + \sum_{i=1}^{n} b_i(s,x) \frac{\partial q_B^{\varepsilon}}{\partial x_i} = 0.$$

The function $I_B^{\varepsilon} = -\varepsilon \log q_B^{\varepsilon}$ satisfies the nonlinear equation

(3.2)
$$\frac{\partial I_{B}^{\varepsilon}}{\partial s} + \frac{\varepsilon}{2} \sum_{i,j=1}^{n} a_{ij}(s,x) \frac{\partial^{2} \phi_{B}^{\varepsilon}}{\partial x_{i} \partial x_{j}} + H(s,x,\nabla \phi_{B}^{\varepsilon}) = 0,$$

where for each row vector p

(3.3)
$$H(s,x,p) = -\frac{1}{2} pa(s,x)p' + p \cdot b(s,x).$$

The function $H(s,x,\cdot)$ is dual to $L(s,x,\cdot)$, in the sense of duality for concave and convex functions. If one puts formally $\varepsilon=0$ in (3.2), one gets the Hamilton-Jacobi equation associated with the variational integrand L. The fact that Γ_B includes only curves φ which reach B by time T corresponds formally to the condition $q_B^\varepsilon(T,x)=0$ for $x\notin B$, and hence $I_B^\varepsilon(T,x)=+\infty$. The connection with the Hamilton-Jacobi equation indicates,

but of course does not prove, results of the kind stated in §2.

This result is proved in [2, §7], by an argument which we sketch below. From the Lemma, Theorem 1 is obtained as follows. There exist $D_1 \subset D_2 \subset \dots$, with union $R^n - B$, such that $\partial D_n = \widetilde{B}_n \cup \{|x| = n\}$, with \widetilde{B}_n of class C^2 and \widetilde{B}_n contained in the n^{-1} -neighborhood of B. We take $B_n = \partial D_n$ and note that $q_B^{\varepsilon} \leq q_{B_n}^{\varepsilon}$,

$$\lim_{\varepsilon \to 0} \inf \ I_B^\varepsilon \geq \lim_{\varepsilon \to 0} \inf \ I_{B_n}^\varepsilon \geq I_{B_n}.$$

Moreover, $I_{B_n} \rightarrow I_B$ as $n \rightarrow \infty$.

The proof in [2, §7] of the Lemma is based on a "penalty" function method. Let $\Phi(x)$ be Lipschitz, with $\Phi(x) > 0$ for $x \notin \partial D$, $\Phi(x) = 0$ for $x \in \partial D$. Let $J^{\varepsilon}(s,x)$ be the solution of (3.2) in $(0,T) \times D$, with $J^{\varepsilon}(s,x) = 0$ for 0 < s < T, $x \in \partial D$, $J^{\varepsilon}(T,x) = \Phi(x)$. Then $J^{\varepsilon}(s,x)$ satisfies the dynamic programming equation for an optimal stochastic control problem in which the drift term $b[t,\xi^{\varepsilon}(t)]$ in (1.1) is replaced by an arbitrary, bounded, nonanticipative control process v(t). Instead of (1.1), one now has the stochastic differential equation

$$d\eta = v(t)dt + \sqrt{\varepsilon} \sigma[t, \eta(t)]dw.$$

The quantity to be minimized is

$$E\{\int_{s}^{\theta} L(t,\eta(t),v(t))dt + \Phi[\theta,\eta(\theta)]\},$$

where $\theta = \min(T, \text{ exit time from D of } \eta(t))$. The minimum of this expression is $J^{\varepsilon}(s,x)$. It is shown in [2] that $\liminf_{\varepsilon \to 0} J^{\varepsilon} \geq J$, where J(s,x) is the minimum of $\int_{s}^{\theta} L[t,\phi(t),\dot{\phi}(t)]dt + \phi[\theta,\phi(\theta)]$ taken among all (ϕ,θ)

with $\phi(s) = x$ and either $\theta = T$ or $\theta < T$, $\phi(\theta) \in \partial D$. For M = 1, 2, ... we now take $\Phi = \Phi_M = M\Psi$ for fixed Ψ , and write $J^{\mathcal{E}} = J^{\mathcal{E}M}$, $J = J^{M}$. It is easy to show that $I \leq \liminf_{M \to \infty} J^{M}$. Moreover, $J^{\mathcal{E}M} \leq I^{\mathcal{E}}$. Then $J^{M} \leq \liminf_{E \to 0} I^{E}_{M}$

for each M, from which the Lemma follows.

References

- [1] Fleming, W.H., Inclusion probability and optimal stochastic control, IRIA Seminars Review, 1977.
- [2] Fleming, W.H., Exit probabilities and optimal stochastic control, Applied Math. and Optimization (to appear).
- [3] Friedman, A., Stochastic Differential Equations and Applications, vol. II, Academić Press, 1976.
- [4] Hernandez-Lerma, O., Stability of differential equations with Markov parameters and the exit problem, Brown University Ph.D. Thesis, 1978.
- [5] Ventcel, A.D. and Freidlin, M.I., On small random perturbations of dynamical systems, Russian Math. Surveys, <u>25</u>(1970), 1-56.